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Many R & D projects base their conclusions
on quantitative experimental data taken as part of the
project. However, few reports show any concern for
taking a lot of data at each data point they present,
hence make their conclusions shaky at best. Suppose a
project sets out to determine whether black rockets go
higher than white rockets of the same design. If the
experimenter builds the models, launches each one, and
reports that the black rocket was tracked to 330 meters,
and the white one to 320 meters, most of us would feel
that a conclusion that black models do indeed fly
higher would be unjustified. The basis for this intuitive
feeling is our experience that engine thrust is not
constant from one engine to the next, and that tracking
really isn't very precise. We'd have been much more
confident of the results if he had launched the model
hundreds of times and reported that the difference in
the average altitudes was greater than could be
accounted for by tracking errors.

This example illustrates two of the many types
of uncontrollable external variables whose fluctuations
can cause a single piece of data to be far from an
average obtained by making a large numbers of
experimental runs. If these fluctuations are as likely to
be negative as positive, they are called random
fluctuations, since they introduce a random error in any
single piece of data that cannot be predicted. For
example, the variation in engine thrust discussed
previously introduces a random error in altitude. Or, if
you perform a Gregorek-type strobe B/G analysis
(Model Rocketry, November, 1971 and NARTS TER
4), the speed at which you throw the glider can also be
considered as fairly random. It should be clear that for
this type of fluctuation-where the error from the
average is as likely to be positive as negative-that the
more data you take, the closer your average value is
likely to be to the true result.

If you are to convince anyone that the
conclusion you draw from your data is valid, it is very
important that you make some estimate of the error
due to these random fluctuations. For even if you
launch your model in an altitude experiment 20 times,
you can't be sure that you have averaged out the
engine and tracking fluctuations. What we want to be
able to do is report data with an error estimate-330 +

40 meters for example-which says that we are
reasonably confident that the average altitude we
would get if we launched the model a hundred
thousand times would be somewhere between 290 and
370 meters.

Suppose that the day before we do our
experiment, the ghost of Dr. Goddard sneaks out to the
launch field and does launch our model a hundred
thousand times, with closed tracks each flight. If he
uses, say, a B engine with a rated total impulse of 5.00
newton-seconds, he may get some engines with very
little thrust, and some with as much as 10 or 15 nt-sec,
all because the engine-making machines aren't perfect.
So he'll have some flights that barely get off the pad,
while others will make him swear that our model will
win design efficiency at the next contest. A graph of
his altitudes would then be like that shown in Figure
1. (This bell-shaped curve is familiar because many
types of fluctuations follow the same principle as
engine variations: the likelihood of any one piece of
data varying from the average a small amount is high,
and although it doesn't happen very often, data
sometimes varies a large amount from the average.)

When we go out to the field the next day, we
can't take nearly as many data points as Dr. Goddard
did, so our data might look like that shown in Figure
2. In general, the average of our data won't be the
same as his, since we probably haven't averaged out all
the fluctuations in engines, tracking, etc. What must
now do is mathematically analyze our data to make an
estimate of how far off the true average our average
from the 20 flights is; that is , compute probable error
limits.

Even though we have taken only a few data
points, they should fall on the same shaped curve as
Dr. Goddard's, since any collection of data is just a
sample of the data that would be recorded if the
experiment were repeated forever. So we can use this
bell-shaped curve as a model for our data, and use the
mathematical analysis of this type of curve that was
developed long ago. What we are interested in is the
best possible estimate of how far the average of our
data is from the average of the data from the
experiment repeated forever. In mathematical terms,
this best estimate is called the standard deviation of



the mean ("mean" is just another word for average).
This "standard deviation" is a standardized "best
estimate" of the difference of our average from the true
average. It is standardized in such a way that if you
report an altitude of 330 meters with a standard
deviation of the mean of +40 meters you are saying
that you are 68% confident that the true average lies
within one standard deviation (+40 meters) of 330, and
95% confident that the true average lies somewhere
within £80, or two standard deviations, of 330.

We calculate the average of our data in the
normal way, by adding up all the altitudes and dividing
by the number of flights, If N stands for the number of
flights X(1), X(2), X(3), etc. are the altitudes of the
flights, and X is the average, the formula is* :

N
Z=2y
=

X(I1)

Having once calculated this average, we can
get the standard deviation of the mean from the
following formula where o _ stands for the standard
deviation of the mean:

N
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This formula tells us to find the difference between
each of the data values and their average, then square
that difference. We do this for all of our data values,
add all the squared results, and take the square root of
that sum. We finally divide this result by the square
root of N, (the number of data points) times N-1 to get
the standard deviation of our mean. The standard
deviation of the mean of 20 data values shown in
Figure 2 is worked out in Table 1.

It is this standard deviation of the mean that
we should quote as the error attached to our average
altitude (here it would be 329 *4 meters). And the
formula for c_ tells us several interesting things. First,
we see that we can reduce the standard deviation of the
mean simply by taking more data, since it will get
smaller as N increases, Second, if our data is widely
scattered, the quantity [X(1)-X] will be large for most
of the data values, so o will also be large. So we
know that if most of the altitudes in an altitude
experiment, for example, are not about the same, we
should not expect their average to give very precise
information. For example, it would be wrong to draw
any conclusion about whether the black rocket goes
higher than the white rocket based on data of 330 +20
meters for the black rocket and 320 £20 meters for the
white rocket, no matter how many flights are included

in the data. Analyzing you-data in this way in the field
isn't very difficult, and can often tell you whether you
need to take more data to be able to draw a valid
conclusion.

The formulas we have just discussed give an
estimate for the uncertainty in you data only for
random errors of the type previously illustrated. Keep
in mind that things like difference in fin finish, launch
lugs, calibration of any measuring apparatus, linearity
of data sensors used, and personal errors on the part of
the experimenter can put the average of the data taken
much farther from the true average than is indicated by
these formulas. That's why it's important to fully
describe the experimental procedures used in you
report.

Finally, note that although we have used an
altitude experiment as our example in this article, the
same principles of taking a lot of data at each data
point and reporting the averaged results with standard
deviations of the mean attached apply to al// R & D
projects where quantitative data is taken.

*For those unfamiliar with it, the notation

N
?;;x(r)

1s a shorthand that tells us to add X(1) + X(2) + X(3)
+ ...+ X(N).

Jay Apt is a former NAR Secretary and Trustee and is
currently a Shuttle astronaut.

Reprinted from the December 1972 Model Rocketeer.




Table 1 W
X(1) x(1)-X (x(n-%)?
305 -24 576
305 .24 576
310 -19 361
35 -14 ' 196
320 -9 81
320 . -9 81
320 -9 81
325 -4 16
325 -4 16
325 -4 16
330 1 1
330 1 1
.330 1 1
335 6 36
335 6 36
335 6 36
340 1n 121
345 16 256
360 3 963
370 41 1681
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